![]() |
| | #1 |
| Bir dairenin bütün noktalarının daire düzlemi dışındaki bir nokta ile birleşimine koni denir. Yüksekliği tabanın merkezinden geçen koniye ise dik koni denir. [Üye Olmadan Linkleri Göremezsiniz. Lütfen Üye Olmak için TIKLAYIN...] Koninin temel elemanları; taban, yanal yüzey, tepe noktası, ana doğrular, eksen, yarıçap ve yüksekliktir. ► Konide yer alan daireye taban denir. ► Tabanın yarıçapı koninin yarıçapıdır ve “r” ile gösterilir. ► Koniyi oluşturmak için taban dışında alınan noktaya tepe noktası denir. ► Tepe noktası ile taban merkezini birleştiren doğru parçasına eksen denir. ► Tepe noktasından tabana indirilen dikmeye yükseklik denir ve “h” ile gösterilir. ► Dik dairesel koninin ekseni tabana dik olduğu için eksen aynı zamanda yüksekliktir. ► Tepe noktası ile taban dairesinin çevresi üzerindeki bir noktayı birleştiren doğru parçalarına ana doğru denir ve “a” ile gösterilir. [Üye Olmadan Linkleri Göremezsiniz. Lütfen Üye Olmak için TIKLAYIN...] Dik dairesel koninin açınımında; tabanı oluşturan daire, yanal yüzleri oluşturan daire dilimi yer alır. [Üye Olmadan Linkleri Göremezsiniz. Lütfen Üye Olmak için TIKLAYIN...] Dik dairesel konide yarıçap, yükseklik ve ana doğru dik üçgen oluşturur. Pisagor bağıntısından yararlanılarak aşağıdaki eşitlik elde edilir. h2 + r2 = a2 [Üye Olmadan Linkleri Göremezsiniz. Lütfen Üye Olmak için TIKLAYIN...] Konide tabanı oluşturan dairenin çevre uzunluğu, yanal yüzeyi oluşturan daire diliminin yayının uzunluğuna eşittir. Bu eşitlikten aşağıdaki eşitlik elde edilir. TabandakiDaireninYarıçapı(r)DaireDilimininYarıçapı (a) = DaireDilimininMerkezAçısı(α)360
________________ Gönül nasıl derin bir kederde... ![]() ![]() | |
| |
| Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir) | |
| Seçenekler | |
| Stil | |
| |